CCDTT

300-101 ROUTE – Configure EIGRP Unequal Load balancing

EIGRP’s solution to the problem

As you remember, EIGRP only uses an alternate path if it satisfies the feasibility condition: AD < FD, where AD is “advertised distance” (the peer’s metric to reach the destination) and FD is feasible distance (local best metric to the destination). The condition ensures that the path chosen by the peer will never lead into a loop, as our primary path is not subset of it (otherwise, AD would be higher or equal than FD). In our case, if we look at R1, FD=10 to reach R2 and R3’s AD=100, thus the alternate path may happen to lead into a loop. It has been proven by Garcia Luna Aceves that the feasibility condition is enough to always select loop-free alternative paths. Interested reader may look at the original paper at DUAL for the proof. In addition, if you are still thinking that EIGRP is history, I recommend you reading RFC5286 to find the same loop-free condition for Basic IP Fast Rerouting procedure (there are alternate approaches to IP FRR though). Since the feasibility condition used by EIGRP allows for selecting only loop-free alternatives it is safe to enable UCLB on EIGRP routers – provided that EIGRP is the only routing protocol – all alternate paths will never result in a routing loop.

Configuring EIGRP for Unequal-Cost Load Balancing

A few words about configuring UCLB in EIGRP. You achieve this by setting the “variance” value to something greater than 1. EIGRP routing process will install all paths with metric < best_metric*variance into the local routing table. Here metric is the full metric of the alternate path and best_metric is the metric of the primary path. By default, the variance value is 1, meaning that only equal-cost paths are used. Let’s configure a quick test-bed scenario We will use EIGRP as the routing protocol running on all routers, and set metric weights so that K1=0; K2=0; K3=1; K4=K5=0; This means that only the link delay is used for EIGRP metric calculations. Such configuration makes EIGRP metric purely additive and easy to work with.

Share the Post:

Related Posts

Help Us By Donating